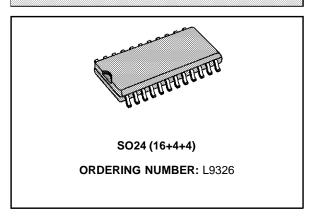


DUAL INTELLIGENT POWER LOW SIDE SWITCH


PRODUCT PREVIEW

- DUAL POWER LOW SIDE DRIVER WITH LOW R_{DSON} TYPICALLY 250mΩ (T_J = 25°C)
- INTERNAL OUTPUT CLAMPING DIODES V_{FB} = 50V FOR INDUCTIVE RECIRCULATION
- LIMITED OUTPUT VOLTAGE SLEW RATE FOR LOW EMI
- µP COMPATIBLE ENABLE AND INPUT
- WIDE OPERATING SUPPLY VOLTAGE RANGE 6.5V TO 40V
- REAL TIME DIAGNOSTIC FUNCTIONS:
 - OUTPUT SHORTED TO GND
 - OUTPUT SHORTED TO VSS
 - OPEN LOAD
 - OVERTEMPERATURE
- DEVICE PROTECTION FUNCTIONS
 - OVERLOAD DISABLE
 - THERMAL SHUTDOWN

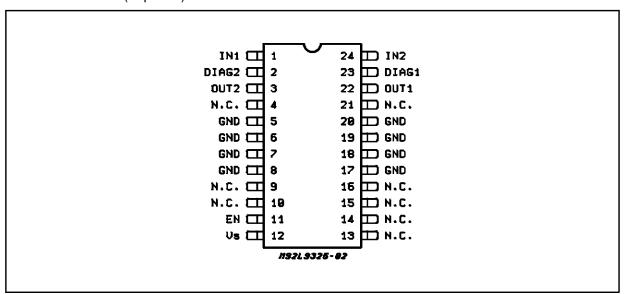
DESCRIPTION

The L9326 is a monolithic integrated dual low side driver realized in an advanced Multipower-

MULTIPOWER BCD TECHNOLOGY

BCD mixed technology. It is especially intended to drive valves in automotive environment. Its inputs are μP compatible for easy driving. Particular care has been taken to protect the device against failures, to avoid electro-magnetic interferences and to offer extensive real time diagnostic.

BLOCK DIAGRAM



October 1992 1/8

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{SDC}	DC Supply Voltage	- 1.5 to 40	V
VS _{TR}	Transient Supply Voltage t≤500ms	60	V
VIN,EN	Input Voltage 10mA	- 1.5 to 6	V
Ιο	Output Load Current	internal limited	
VO _{DC}	DC Output Voltage	45	V
VO _{TR}	Transient Output Voltage $R_L \ge 4\Omega$	60	V
IOR	Reverse Output Current (limited by load)	- 4	Α
UD_DC	Diagnostic DC Output Voltage	- 0.3 to 20	V
EO	Switch-off energy $t_{EO} = 250 \text{ms}, t = 5 \text{ms}$	50	mJ
T _{jEO}	Junction Temperature during Switch-off	175	°C
Tj	Junction Temperature	- 40 to +150	°C
T _{stg}	Storage Temperature	- 55 to +150	°C

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Symbol Parameter		Unit
T _{jDIS}	Thermal Disable Junction Temperature Threshold	160 to 190	°C

ELECTRICAL CHARACTERISTICS (Operating range: $6.5V < VS \le 32V$ (45V for $t \le 500ms$), $-40^{\circ}C \le T_{J} \le 150^{\circ}C$ unless otherwise specified).

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
ΙΟu	Open Load Current	$V_{EN} = V_{IN} = H$	2.5	125	250	mΑ
VOu	Open Load Voltage	$V_{EN} = H,$ $V_{EN} = L$	0.525V _S	0.55V _S	0.575V _S	
IO ₀	Over Load Current Threshold	$T_j \le 150^{\circ}C$	5			Α
RO	Internal Output Pull Down	$V_{EN} = L$	14	20	36	kΩ
$V_{(EN,IN)L}$	Logic Input Low Voltage	$VS > 4.5V$ $I_{EN,IN} \le 10mA$	- 1.5		1	V
$V_{(EN,IN)H}$	Logic Input High Voltage	VS > 4.5V	2		5.5	V
$V_{(EN,IN)hys}$	Logic Input Hysteresis	VS > 4.5V	0.2	0.4		V
I _{EN}	Logic Input Sink Current	$VS > 4.5V \ 0.5V \le V_{EN} \le 5.5V$	21	30	39	μΑ
I _{IN}	Logic Input Sink Current	$VS > 4.5V \ 0.5V \le V_{IN} \le 5.5V$	70	100	130	μΑ
R _{DSON}	Output on Resistance	$T_j = 150^{\circ}C \text{ VS} > 9.5 \text{V I}_O = 2\text{A}$		400	500	mΩ
VOc	Output Voltage During Clamping		45	52	60	V
IS _{SB}	Static Standby Supply Current	V _{EN} = L		0.4	1	mA
IS	DC Supply Current	$V_{EN} = V_{IN} = H$		0.4	5	mA
VD_L	Diagnostic Output Low Voltage	$I_O = 2mA VS \ge 4.5V$			0.5	V
ID _{LE}	Diagnostic Output Leakage Current	VS = 0 or $VS = Open$; $VD = 5.5V$ $T_j \le 125$ °C		0.1	10	μΑ
I _D	Diagnostic Output Current Capability	VD ≤ 20V DIAG = L		4		mA
t _{DOL}	Diagnostic Overload Delay Switch-off time	Fig. 1 IO > IO_0	50	100	200	μs
S _{ON,OFF}	Output (fall,rise) slew rate	Fig. 2 $R_L = 6\Omega$	1000	1500	2000	V/ms
t _{D ON}		Fig.2			12.5	μs
t _{D OFF}	Output Delay Time	9V ≤ VS ≤ 16V	7.5		27.5	μs
t _{D IOu}	Open Load Diagnostic Delay Time	$R_L \le 6\Omega$			35	μs

DIAGNOSTIC TABLE

Operating Range: $6.5V < VS \le 32V$ (45V for $t \le 500ms$), $-40^{\circ}C \le T_{J} \le 150^{\circ}C$

Conditions	EN	IN	Out	Diag
Normal Function	L	X	OFF	L
	Н	L	OFF	L
	Н	Н	ON (*)	Н
Over Load I _O > 5A	X	X	OFF	L
160°C < T _j ≤ 190°C	X	L	OFF	Н
Overtemperature	X	Н	OFF	L
Open Load	X	L	OFF	Н
V _O < 0.6V	L	Н	OFF	Н
I _O < 250mA	Н	Н	ON (*)	L
Reset Over Load Latch	Х		D.C.	D.C.

(*) For VS < 6.5V, Out = Undefined

Figure 1: Diagnostic Overload Delay Time

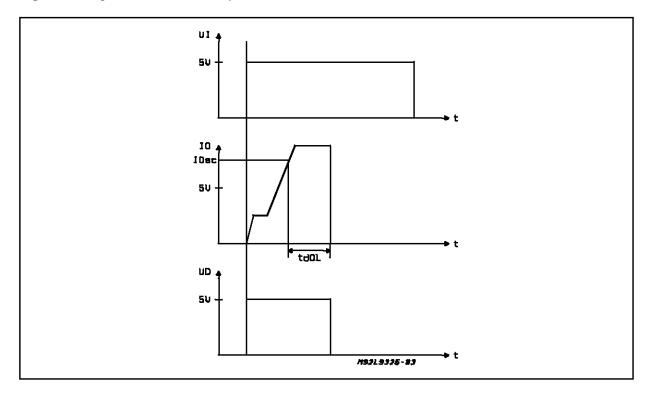
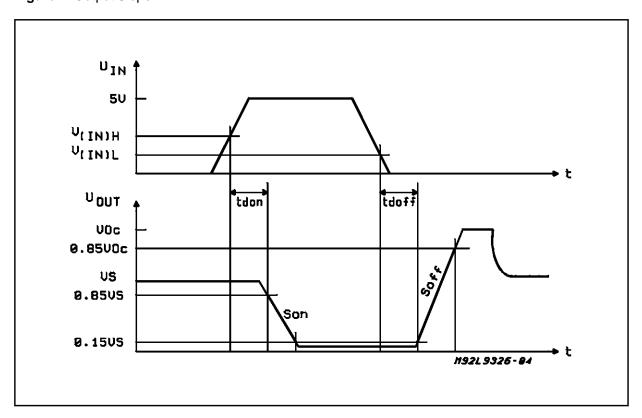



Figure 2: Output Slope

+ 5V ZUALUE CHANNEL 1 **UBat**i DUT: DIAG UNDERVOLTAGE E) ΕN OUT2 UBatt ZUALUE uР **QUTPUT** OVERLAMP CONTROLLER CONTROL T) 1N2 R DELAY OVERLOAD Ω TIMER DIAG2 DIAGNOSTIC OPEN CONTROL LDAD GND CHANNEL 2 /19,71,**93,76**-85

Figure 3: Application Circuit Diagram

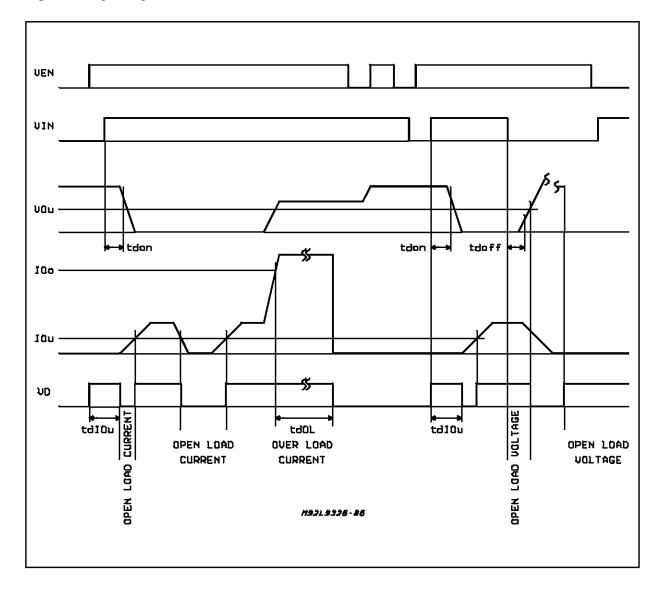
CIRCUIT DESCRIPTION

The L9326 is a dual low side driver for inductive loads like valves in automotive environment. The device is enabled by a common CMOS compatible ENABLE high signal. The internal pull down resistances at the ENABLE and INPUT pins protect the device in open input conditions against malfunctions. An output slope limitation for du/dt is implemented to reduce the EMI. An integrated active flyback voltage limitation clamps the output voltage during the flyback phase to 50V.

Each driver is protected against short circuit condition ¹⁾ the output will be disabled after a short delay time tDOL to suppress spikes ²⁾. This disable is latched until a negative slope occure at the correspondent input pin. The Thermal disable of the output will be reseted if the junction tempera-

ture decreases below 160°C.

For the real time error diagnosis the voltage and the current of the output is compared with internal fixed values VO_u and IO_u to recognize open load $(R_L \ge 20 \ K\Omega)$ in ON anf OFF conditions.


The diagnostic output level in connection with different ENABLE and INPUT conditions allows to recognize four different fail states, under voltage, over load, overtemp and open load.

The diagnostic output is also protected against short circuit up to $\mbox{UD}_{\mbox{\scriptsize max}}.$

- 1) overstepeing the over load current thereshold IO_o .
- During the diagnostic overload delay switch-off time t_{DOL} the output current will be limited only by the R_{DSON} of the output.

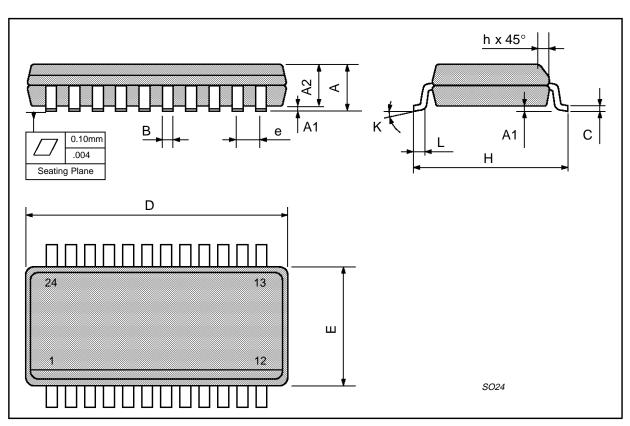


Figure 4: Logic Diagram.

SO24 PACKAGE MECHANICAL DATA

DIM.		mm			inch	
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.35		2.65	0.093		0.104
A1	0.10		0.30	0.004		0.012
A2			2.55			0.100
В	0.33		0.51	0.013		0.0200
С	0.23		0.32	0.009		0.013
D	15.20		15.60	0.598		0.614
E	7.40		7.60	0.291		0.299
е		1.27			0,050	
Н	10.0		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
k		0° (min.), 8° (max.)				
L	0.40		1.27	0.016		0.050

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

